356 research outputs found

    Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma

    Get PDF
    Background Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. Methods We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. Results ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. Conclusion Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma

    Erratum to: Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition

    Get PDF
    <p>Abstract</p> <p>Nearly monodisperse cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid&#8211;solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.</p

    Refinement indicators for estimating hydrogeologic parameters

    Get PDF
    We identify simultaneously the hydraulic transmissivity and the storage coefficient in a ground water flow governed by a linear parabolic equation. Both coefficients are assumed to be functions which are piecewise constant in space and constant in time. Therefore the unknowns are the coefficient values as well as the geometry of the zones where these parameters are constant. The identification problem is formulated as the minimization of a misfit least-square function. Using refinement indicators, we refine the parameterization locally and iteratively. We distinguish the cases where the two parameters have the same parameterization or different parameterizations

    Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis

    Get PDF
    Objective: Corticosteroids are used in sepsis treatment to benefit outcome. However, discussion remains on which patients will benefit from treatment. Inter-individual variations in cortisol sensitivity, mediated through the glucocorticoid receptor, might play a role in the observed differences. Our aim was to study changes in mRNA levels of three glucocorticoid receptor splice variants in neutrophils of children with sepsis. Patients and design: Twenty-three children admitted to the pediatric intensive care unit with sepsis or septic shock were included. Neutrophils were isolated at days 0, 3 and 7, and after recovery (>3 months). mRNA levels of the glucocorticoid receptor splice variants GR-α (determining most of the cortisol effect), GR-P (increasing GR-α effect) and GR-β (inhibitor of GR-α) were measured quantitatively. Main results: Neutrophils from sepsis patients showed decreased levels of glucocorticoid receptor mRNA of the GR-α and GR-P splice variants on day 0 compared to after recovery. GR-α and GR-P mRNA levels showed a gradual recovery on days 3 and 7 and normalized after recovery. GR-β mRNA levels did not change significantly during sepsis. GR expression was negatively correlated to interleukin-6 (a measure of disease severity, r = -0.60, P = 0.009). Conclusions: Children with sepsis or septic shock showed a transient depression of glucocorticoid receptor mRNA in their neutrophils. This feature may represent a tissue-specific adaptation during sepsis leading to increased cortisol resistance of neutrophils. Our study adds to understanding the mechanism of cortisol sensitivity in immune cells. Future treatment strategies, aiming at timing and tissue specific regulation of glucocorticoids, might benefit patients with sepsis or septic shock

    Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization

    Get PDF
    Based on a low-temperature route, monodispersed CoFe2O4 microspheres (MSs) were fabricated through aggregation of primary nanoparticles. The microstructural and magnetic characteristics of the as-prepared MSs were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmitting electron microscopy, and vibrating sample magnetometer. The results indicate that the diameters of CoFe2O4 MSs with narrow size distribution can be tuned from over 200 to ~330 nm. Magnetic measurements reveal these MSs exhibit superparamagnetic behavior at room temperature with high saturation magnetization. Furthermore, the mechanism of formation of the monodispersed CoFe2O4 MSs was discussed on the basis of time-dependent experiments, in which hydrophilic PVP plays a crucial role

    BMP-2 Dependent Increase of Soft Tissue Density in Arthrofibrotic TKA

    Get PDF
    Arthrofibrosis after total knee arthroplasty (TKA) is difficult to treat, as its aetiology remains unclear. In a previous study, we established a connection between the BMP-2 concentration in the synovial fluid and arthrofibrosis after TKA. The hypothesis of the present study was, therefore, that the limited range of motion in arthrofibrosis is caused by BMP-2 induced heterotopic ossifications, the quantity of which is dependent on the BMP-2 concentration in the synovial fluid

    Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles

    Get PDF
    BACKGROUND AND PURPOSE: Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophysiological consequences including cardiovascular diseases. Its impact on the cerebrovascular system is not well understood. The goal of the present work was to examine the effects of VDD on the morphological, biomechanical and functional properties of cerebral arterioles. METHODS: Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascular parameters and hormone levels (testosterone, androstenedione, progesterone and 25-hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior cerebral artery segments were prepared and their morphological, biomechanical and functional properties were examined using pressure microangiometry. Resorcin-fuchsin and smooth muscle actin staining were used to detect elastic fiber density and smooth muscle cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and COX-2 as well. RESULTS: VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sectional area of arterioles as well as the number of smooth muscle cells in the tunica media. As a consequence, tangential wall stress was significantly lower in the VDD group. In addition, VDD increased the myogenic as well as the uridine 5'-triphosphate-induced tone and impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression were also observed in the endothelium of VDD animals. CONCLUSIONS: VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell proliferation and enhances the vessel tone probably because of increased vasoconstrictor prostanoid levels in young adult rats. In addition, the decreased eNOS expression results in endothelial dysfunction. These morphological and functional alterations can potentially compromise the cerebral circulation and lead to cerebrovascular disorders in VDD

    Molecular Typing and Phenotype Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Blood in Taiwan

    Get PDF
    BACKGROUND: Staphylococcus aureus causes a variety of severe infections such as bacteremia and sepsis. At present, 60-80% of S. aureus isolates from Taiwan are methicillin resistant (MRSA). It has been shown that certain MRSA clones circulate worldwide. The goals of this study were to identify MRSA clones in Taiwan and to correlate the molecular types of isolates with their phenotypes. METHODS: A total of 157 MRSA isolates from bacteremic patients were collected from nine medical centers. They were typed based on polymorphisms in agr, SCCmec, MLST, spa, and dru. Phenotypes characterized included Panton-Valentine leucocidin (pvl), inducible macrolide-lincosamide-streptogramin B resistance (MLSBi), vancomycin (VA) and daptomycin (DAP) minimal inhibitory concentrations (MIC), and superantigenic toxin gene profiles. Difference between two consecutive samples was determined by Mann-Whitney-U test, and difference between two categorical variables was determined by Fisher's exact test. RESULTS: Four major MRSA clone complexes CC1, CC5, CC8, and CC59 were found, including 4 CC1, 9 CC5, 111 CC8, and 28 CC59 isolates. These clones had the following molecular types: CC1: SCCmecIV and ST573; CC5: SCCmecII and ST5; CC8: SCCmecIII, ST239, and ST241, and CC59: SCCmecIV, SCCmecV(T), ST59, and ST338. The toxin gene profiles of these clones were CC1: sec-seg-(sei)-sell-selm-(seln)-selo; CC5: sec-seg-sei-sell-selm-(seln)-selp-tst1; CC8: sea-selk-selq, and CC59: seb-selk-selq. Most isolates with SCCmecV(T), ST59, spat437, and dru11 types were pvl(+) (13 isolates), while multidrug resistance (≥4 antimicrobials) were associated with SCCmecIII, ST239, spa t037, agrI, and dru14 (119 isolates) (p<0.001). One hundred and twenty four isolates with the following molecular types had higher VA MIC: SCCmecII and SCCmecIII; ST5, ST239, and ST241; spa t002, t037, and t421; dru4, dru10, dru12, dru13, and dru14 (p<0.05). No particular molecular types were found to be associated with MLSBi phenotype. CONCLUSIONS: Four major MRSA clone complexes were found in Taiwan. Further studies are needed to delineate the evolution of MRSA isolates
    corecore